Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT Approximate Bayesian computation (ABC) methods are applicable to statistical models specified by generative processes with analytically intractable likelihoods. These methods try to approximate the posterior density of a model parameter by comparing the observed data with additional process‐generated simulated data sets. For computational benefit, only the values of certain well‐chosen summary statistics are usually compared, instead of the whole data set. Most ABC procedures are computationally expensive, justified only heuristically, and have poor asymptotic properties. In this article, we introduce a new empirical likelihood‐based approach to the ABC paradigm called ABCel. The proposed procedure is computationally tractable and approximates the target log posterior of the parameter as a sum of two functions of the data—namely, the mean of the optimal log‐empirical likelihood weights and the estimated differential entropy of the summary functions. We rigorously justify the procedure via direct and reverse information projections onto appropriate classes of probability densities. Past applications of empirical likelihood in ABC demanded constraints based on analytically tractable estimating functions that involve both the data and the parameter; although by the nature of the ABC problem such functions may not be available in general. In contrast, we use constraints that are functions of the summary statistics only. Equally importantly, we show that our construction directly connects to the reverse information projection and estimate the relevant differential entropy by a k‐NN estimator. We show that ABCel is posterior consistent and has highly favorable asymptotic properties. Its construction justifies the use of simple summary statistics like moments, quantiles, and so forth, which in practice produce accurate approximation of the posterior density. We illustrate the performance of the proposed procedure in a range of applications.more » « less
-
Determinantal point processes (DPPs) have recently become popular tools for modeling the phenomenon of negative dependence, or repulsion, in data. However, our understanding of an analogue of a classical parametric statistical theory is rather limited for this class of models. In this work, we investigate a parametric family of Gaussian DPPs with a clearly interpretable effect of parametric modulation on the observed points. We show that parameter modulation impacts the observed points by introducing directionality in their repulsion structure, and the principal directions correspond to the directions of maximal (i.e., the most long-ranged) dependency. This model readily yields a viable alternative to principal component analysis (PCA) as a dimension reduction tool that favors directions along which the data are most spread out. This methodological contribution is complemented by a statistical analysis of a spiked model similar to that employed for covariance matrices as a framework to study PCA. These theoretical investigations unveil intriguing questions for further examination in random matrix theory, stochastic geometry, and related topics.more » « less
-
We propose a novel stochastic network model, called Fractal Gaussian Network (FGN), that embodies well-defined and analytically tractable fractal structures. Such fractal structures have been empirically observed in diverse applications. FGNs interpolate continuously between the popular purely random geometric graphs (a.k.a. the Poisson Boolean network), and random graphs with increasingly fractal behavior. In fact, they form a parametric family of sparse random geometric graphs that are parametrised by a fractality parameter 𝜈 which governs the strength of the fractal structure. FGNs are driven by the latent spatial geometry of Gaussian Multiplicative Chaos (GMC), a canonical model of fractality in its own right. We explore the natural question of detecting the presence of fractality and the problem of parameter estimation based on observed network data. Finally, we explore fractality in community structures by unveiling a natural stochastic block model in the setting of FGNs.more » « less
An official website of the United States government

Full Text Available